Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Loss of whole-tree hydraulic conductance during severe drought and multi-year forest die-off.

Identifieur interne : 002143 ( Main/Exploration ); précédent : 002142; suivant : 002144

Loss of whole-tree hydraulic conductance during severe drought and multi-year forest die-off.

Auteurs : William R L. Anderegg [États-Unis] ; Leander D L. Anderegg ; Joseph A. Berry ; Christopher B. Field

Source :

RBID : pubmed:24394863

Descripteurs français

English descriptors

Abstract

Understanding the pathways through which drought stress kills woody vegetation can improve projections of the impacts of climate change on ecosystems and carbon-cycle feedbacks. Continuous in situ measurements of whole trees during drought and as trees die hold promise to illuminate physiological pathways but are relatively rare. We monitored leaf characteristics, water use efficiency, water potentials, branch hydraulic conductivity, soil moisture, meteorological variables, and sap flux on mature healthy and sudden aspen decline-affected (SAD) trembling aspen (Populus tremuloides) ramets over two growing seasons, including a severe summer drought. We calculated daily estimates of whole-ramet hydraulic conductance and modeled whole-ramet assimilation. Healthy ramets experienced rapid declines of whole-ramet conductance during the severe drought, providing an analog for what likely occurred during the previous drought that induced SAD. Even in wetter periods, SAD-affected ramets exhibited fivefold lower whole-ramet hydraulic conductance and sevenfold lower assimilation than counterpart healthy ramets, mediated by changes in leaf area, water use efficiency, and embolism. Extant differences between healthy and SAD ramets reveal that ongoing multi-year forest die-off is primarily driven by loss of whole-ramet hydraulic capability, which in turn limits assimilation capacity. Branch-level measurements largely captured whole-plant hydraulic limitations during drought and mortality, but whole-plant measurements revealed a potential role of other losses in the hydraulic continuum. Our results highlight the importance of a whole-tree perspective in assessing physiological pathways to tree mortality and indicate that the effects of mortality on these forests' assimilation and productivity are larger than expected based on canopy leaf area differences.

DOI: 10.1007/s00442-013-2875-5
PubMed: 24394863


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Loss of whole-tree hydraulic conductance during severe drought and multi-year forest die-off.</title>
<author>
<name sortKey="Anderegg, William R L" sort="Anderegg, William R L" uniqKey="Anderegg W" first="William R L" last="Anderegg">William R L. Anderegg</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, NJ, 08544-2016, USA, anderegg@princeton.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, NJ, 08544-2016, USA</wicri:regionArea>
<orgName type="university">Université de Princeton</orgName>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Anderegg, Leander D L" sort="Anderegg, Leander D L" uniqKey="Anderegg L" first="Leander D L" last="Anderegg">Leander D L. Anderegg</name>
</author>
<author>
<name sortKey="Berry, Joseph A" sort="Berry, Joseph A" uniqKey="Berry J" first="Joseph A" last="Berry">Joseph A. Berry</name>
</author>
<author>
<name sortKey="Field, Christopher B" sort="Field, Christopher B" uniqKey="Field C" first="Christopher B" last="Field">Christopher B. Field</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24394863</idno>
<idno type="pmid">24394863</idno>
<idno type="doi">10.1007/s00442-013-2875-5</idno>
<idno type="wicri:Area/Main/Corpus">002340</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002340</idno>
<idno type="wicri:Area/Main/Curation">002340</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002340</idno>
<idno type="wicri:Area/Main/Exploration">002340</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Loss of whole-tree hydraulic conductance during severe drought and multi-year forest die-off.</title>
<author>
<name sortKey="Anderegg, William R L" sort="Anderegg, William R L" uniqKey="Anderegg W" first="William R L" last="Anderegg">William R L. Anderegg</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, NJ, 08544-2016, USA, anderegg@princeton.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, NJ, 08544-2016, USA</wicri:regionArea>
<orgName type="university">Université de Princeton</orgName>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Anderegg, Leander D L" sort="Anderegg, Leander D L" uniqKey="Anderegg L" first="Leander D L" last="Anderegg">Leander D L. Anderegg</name>
</author>
<author>
<name sortKey="Berry, Joseph A" sort="Berry, Joseph A" uniqKey="Berry J" first="Joseph A" last="Berry">Joseph A. Berry</name>
</author>
<author>
<name sortKey="Field, Christopher B" sort="Field, Christopher B" uniqKey="Field C" first="Christopher B" last="Field">Christopher B. Field</name>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Climate Change (MeSH)</term>
<term>Colorado (MeSH)</term>
<term>Droughts (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Plant Leaves (physiology)</term>
<term>Populus (physiology)</term>
<term>Seasons (MeSH)</term>
<term>Soil (chemistry)</term>
<term>Trees (physiology)</term>
<term>Water (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (physiologie)</term>
<term>Changement climatique (MeSH)</term>
<term>Colorado (MeSH)</term>
<term>Eau (physiologie)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Populus (physiologie)</term>
<term>Saisons (MeSH)</term>
<term>Sol (composition chimique)</term>
<term>Sécheresses (MeSH)</term>
<term>Écosystème (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arbres</term>
<term>Eau</term>
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
<term>Trees</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Climate Change</term>
<term>Colorado</term>
<term>Droughts</term>
<term>Ecosystem</term>
<term>Seasons</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Changement climatique</term>
<term>Colorado</term>
<term>Saisons</term>
<term>Sécheresses</term>
<term>Écosystème</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Understanding the pathways through which drought stress kills woody vegetation can improve projections of the impacts of climate change on ecosystems and carbon-cycle feedbacks. Continuous in situ measurements of whole trees during drought and as trees die hold promise to illuminate physiological pathways but are relatively rare. We monitored leaf characteristics, water use efficiency, water potentials, branch hydraulic conductivity, soil moisture, meteorological variables, and sap flux on mature healthy and sudden aspen decline-affected (SAD) trembling aspen (Populus tremuloides) ramets over two growing seasons, including a severe summer drought. We calculated daily estimates of whole-ramet hydraulic conductance and modeled whole-ramet assimilation. Healthy ramets experienced rapid declines of whole-ramet conductance during the severe drought, providing an analog for what likely occurred during the previous drought that induced SAD. Even in wetter periods, SAD-affected ramets exhibited fivefold lower whole-ramet hydraulic conductance and sevenfold lower assimilation than counterpart healthy ramets, mediated by changes in leaf area, water use efficiency, and embolism. Extant differences between healthy and SAD ramets reveal that ongoing multi-year forest die-off is primarily driven by loss of whole-ramet hydraulic capability, which in turn limits assimilation capacity. Branch-level measurements largely captured whole-plant hydraulic limitations during drought and mortality, but whole-plant measurements revealed a potential role of other losses in the hydraulic continuum. Our results highlight the importance of a whole-tree perspective in assessing physiological pathways to tree mortality and indicate that the effects of mortality on these forests' assimilation and productivity are larger than expected based on canopy leaf area differences. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">24394863</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>11</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>175</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2014</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Loss of whole-tree hydraulic conductance during severe drought and multi-year forest die-off.</ArticleTitle>
<Pagination>
<MedlinePgn>11-23</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-013-2875-5</ELocationID>
<Abstract>
<AbstractText>Understanding the pathways through which drought stress kills woody vegetation can improve projections of the impacts of climate change on ecosystems and carbon-cycle feedbacks. Continuous in situ measurements of whole trees during drought and as trees die hold promise to illuminate physiological pathways but are relatively rare. We monitored leaf characteristics, water use efficiency, water potentials, branch hydraulic conductivity, soil moisture, meteorological variables, and sap flux on mature healthy and sudden aspen decline-affected (SAD) trembling aspen (Populus tremuloides) ramets over two growing seasons, including a severe summer drought. We calculated daily estimates of whole-ramet hydraulic conductance and modeled whole-ramet assimilation. Healthy ramets experienced rapid declines of whole-ramet conductance during the severe drought, providing an analog for what likely occurred during the previous drought that induced SAD. Even in wetter periods, SAD-affected ramets exhibited fivefold lower whole-ramet hydraulic conductance and sevenfold lower assimilation than counterpart healthy ramets, mediated by changes in leaf area, water use efficiency, and embolism. Extant differences between healthy and SAD ramets reveal that ongoing multi-year forest die-off is primarily driven by loss of whole-ramet hydraulic capability, which in turn limits assimilation capacity. Branch-level measurements largely captured whole-plant hydraulic limitations during drought and mortality, but whole-plant measurements revealed a potential role of other losses in the hydraulic continuum. Our results highlight the importance of a whole-tree perspective in assessing physiological pathways to tree mortality and indicate that the effects of mortality on these forests' assimilation and productivity are larger than expected based on canopy leaf area differences. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Anderegg</LastName>
<ForeName>William R L</ForeName>
<Initials>WR</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, NJ, 08544-2016, USA, anderegg@princeton.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Anderegg</LastName>
<ForeName>Leander D L</ForeName>
<Initials>LD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Berry</LastName>
<ForeName>Joseph A</ForeName>
<Initials>JA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Field</LastName>
<ForeName>Christopher B</ForeName>
<Initials>CB</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>01</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D057231" MajorTopicYN="N">Climate Change</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003120" MajorTopicYN="N">Colorado</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="Y">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="N">Seasons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>09</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>12</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>1</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>1</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24394863</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-013-2875-5</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1444-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18556546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 19;333(6045):988-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21764754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):233-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22167807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Nov 29;491(7426):752-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23172141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Aug;187(3):631-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20659252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Feb;125(2):779-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11161035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2011 Oct;26(10):523-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21802765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jan 23;323(5913):521-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19164752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2012 Jun;32(6):764-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22302370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1999 Aug;19(10):681-687</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Aug;187(3):666-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20618912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jul;9(7):671-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22930834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2008 Mar;155(3):441-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18224341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Mar;36(3):655-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22934921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2009 Jul 21;259(2):325-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19361530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Dec;88(4):1418-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Appl. 2008 Jun;18(4):911-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18536252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Mar;31(3):250-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21444372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1999 Jun;19(7):445-452</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1998 Aug-Sep;18(8_9):499-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Aug;32(8):968-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19389053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2013 May;19(5):1526-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23504823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Dec;17(12):693-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23099222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2010 Nov;164(3):601-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20556621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Mar;185(4):1000-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20100209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7063-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19365070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 May;190(3):750-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21261625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rapid Commun Mass Spectrom. 2009 Aug 30;23(16):2476-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19603463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2013 Apr;19(4):1188-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23504895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Sep;35(9):1601-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22462824</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>New Jersey</li>
</region>
<settlement>
<li>Princeton (New Jersey)</li>
</settlement>
<orgName>
<li>Université de Princeton</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Anderegg, Leander D L" sort="Anderegg, Leander D L" uniqKey="Anderegg L" first="Leander D L" last="Anderegg">Leander D L. Anderegg</name>
<name sortKey="Berry, Joseph A" sort="Berry, Joseph A" uniqKey="Berry J" first="Joseph A" last="Berry">Joseph A. Berry</name>
<name sortKey="Field, Christopher B" sort="Field, Christopher B" uniqKey="Field C" first="Christopher B" last="Field">Christopher B. Field</name>
</noCountry>
<country name="États-Unis">
<region name="New Jersey">
<name sortKey="Anderegg, William R L" sort="Anderegg, William R L" uniqKey="Anderegg W" first="William R L" last="Anderegg">William R L. Anderegg</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002143 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002143 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24394863
   |texte=   Loss of whole-tree hydraulic conductance during severe drought and multi-year forest die-off.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24394863" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020